Weighted Graphs (Fpadol pe
Bapn)

Manolis Koubarakis

Data Structures and Programming
Techniques

Weighted Graphs

* Weighted graphs are directed graphs in which
numbers called weights are attached to the
directed edges.

 Example: Let the vertices of a graph represent
cities on a map. The weight on an edge
connecting city A to city B can be the travel
distance from A to B, the cost of an airline ticket
to go from A to B, or the time required to travel
from A to B.

Weighted Graphs (cont’d)

* To represent a weighted directed graph G, we
can use an adjacency matrix T in which:

— Tli,j| = wy; if there exists an edge e = (v;, v;) of
weight w;;.

—T[i,i] =0
—T[i, j] = oo if there is no edge from v; to v; .

* We will assume that all weights w;; are non-negative
numbers.

Example Weighted Graph

Data Structures and Programming
Techniques

Adjacency Matrix for the Example
Graph

B S B
1 0 3 00 00 00
2 00 0 7 00 00 10
3 00 00 0 5 1 00
4 00 0o 00 0 6 oo
5 (o) (o) o) o'} 0 7
6 00 [o'e) 8 2 oo 0

Data Structures and Programming
Techniques

Shortest Paths (2uvtopotepa
Movormnartia)
* The length of a path P is the sum of the
weights of the edges of P.

* A very interesting problem in a directed
weighted graph is to find the shortest path
from a vertex A to a vertex B.

The Shortest Path from Vertex 1 to
Vertex 5

The Single Source Shortest Paths
Problem

* Let G = (V,E) be adirected graph in which
each edge has a non-negative weight, and one
vertex is specified as the source (adetnpia).

* The single source shortest paths problem (to
NMPOBANLA TWV GUVIOMOTEPWYV HOVOTIATLWV
kown¢ adetnpiocg) is to determine the length
of the shortest path from the source to each
vertex in V.

Dijkstra’s Greedy Algorithm for the
Single Source Shortest Paths Problem

* Let G = (V, E) our graph.
* We start with a vertex set W = {s}
containing only the source. A

* We will progressively enlarge W by adding one
new vertex at a time, until W includes all vertices
of V.

* The vertex we add at each stage is the vertex w in
IV — W, which is at a minimum distance from the
source among all vertices in V — W that have not
been added to W (this is a greedy choice).

Dijkstra’s Algorithm (cont’d)

* We keep track of the minimum distance from
the source s at each stage by using an array
ShortestDistance|u] = Alu] which keeps
track of the shortest distance from s to each
vertex u in W and also each vertexu inV — W
using a path p starting at s, such that all
vertices of path p lie in W, except the last
vertex u which lies outside V.

Dijkstra’s Algorithm (cont’d)

* Every time we add a new vertex to W, we
update the array ShortestDistance|u]. This
distance is updated in case it is bigger than the
length of the path from the source to u going
through w which is ShortestDistance|w] +
T'|w,u]. This operation is called relaxation
(xaAapwaon).

Example Graph

Data Structures and Programming
Techniques

12

Expanding the Vertex Set W in Stages

mnmmmmmm

Start {1} {2,3,4,5,6} -

Data Structures and Progra in

Expanding the Vertex Set W in Stages
(cont’d)

mnmmmmmm

Start {1} {2,3,4,5,6} -

W-=2 is chosen for the second stage.

Data Structures and Programming

Expanding the Vertex Set W in Stages
(cont’d)

mnmmmmmm

Start {1} {2,3,4,5,6} -
2 {1,2} {3,4,5,6} 2 3 0 3 10 o) o 5

Data Structures and Progra i

Expanding the Vertex Set W in Stages
(cont’d)

mnmmmmmm

Start {1} {2,3,4,5,6} -
2 {1,2} {3,4,5,6} 2 3 0 3 10 o) o 5

W=6 is chosen for the third stage.

Data Structures and Programming
Techniques

Expanding the Vertex Set W in Stages
(cont’d)

E-HEMEEIMEEIEEIEEI

Start {1} {2,3,4,5,6} -
2 {1,2} {3,456} 2 3 0 3 10 o) o 5
3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ©o 5

Data Structures and Programming
Techniques

Expanding the Vertex Set W in Stages
(cont’d)

E-HEMEEIMEEIEEIEEI

Start {1} {2,3,4,5,6} -
2 {1,2} {3,456} 2 3 0 3 10 o) o 5
3 {1,2,6} {3,4,5} 6 5 0 3 10 7 ©o 5

W=4 is chosen for the fourth stage.

Data Structures and Programming
Techniques

18

Expanding the Vertex Set W in Stages

Start
2
3
4

{1}

{1,2}
{1,2,6}
{1,2,6,4}

{2,3,4,5,6} -

{3,4,5,6}
{3,4,5}
3,5}

(cont’d)

3

2 3 0 3
6 5 0 3
4 7 0 3

Data Structures and Programming
Techniques

m-mmmmmmm

10 00 o) 5
10 7 [o'e) 5
10 7 13 5

Expanding the Vertex Set W in Stages

(cont’d)
m-mmmmmmm
Start {1} {2,3,4,5,6} - - 3
2 {1,2} {3,4,5,6} 2 3 0 3 10 ¢'s) ¢'s) 5
3 {1,2,6} {3,4,5} 6 5 0 3 10 7 o 5
4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5

W=3 is chosen for the fifth stage.

Data Structures and Programming
Techniques

Expanding the Vertex Set W in Stages

(cont’d)
_mmmmmmm
Start {1} {2,3,4,5,6} - - 3 5
2 {1,2} {3,4,5,6} 2 3 0 3 10 0 00 5
3 {1,2,6} {3,4,5} 6 5 0 3 10 7 0 5
4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5
5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

Data Structures and Programming
Techniques

Expanding the Vertex Set W in Stages
(cont’d)

_MMMMMEEIEEI

Start {1} {2,3,4,5,6} 3 5
2 {1,2} {3,4,5,6} 2 3 0 3 10 o0 © 5
3 {1,2,6} {3,4,5} 6 5 0 3 10 7 © 5
4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5
5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5

W=5 is chosen for the sixth stage.

Data Structures and Programming 7
Techniques

Expanding the Vertex Set W in Stages
(cont’d)

_mmmmmmm

Start {1} {2,3,4,5,6} - 3 5
2 {1,2} {3,456} 2 3 0 3 10 00 © 5
3 {1,2,6} {3,4,5} 6 5 0 3 10 7 © 5
4 {1,2,6,4} {3,5} 4 7 0 3 10 7 13 5
5 {1,2,6,4,3} {5} 3 10 0 3 10 7 11 5
6 {1,2,6,4,3,5} {} 5 11 0 3 10 7 11 5

Data Structures and Programming
Techniques 7

Dijkstra’s Algorithm in Pseudocode

volid ShortestPath (void)

{

Let MinDistance be a variable that takes edge

welights as wvalues.

Let Minimum(x,y) be a function whose value 1s the lesser
of x and vy.

/* Let s in V be the source vertex at which the
shortest paths starts. */

/* Initialize W and ShortestDistance[u] as follows: */

W={s};

ShortestDistance[s]=0;

for (each u in V-{s}) ShortestDistancel[ul]l=T[s] [u];

Dijkstra’s Algorithm (cont’d)

/*Now repeatedly enlarge W until W includes all vertices in V */
while (W!=V) {
/* find the vertex w in V-W at the minimum distance from s */
MinDistance=oo;
for (each v in V-W) {
i1f (ShortestDistance[v] < MinDistance) {
MinDistance=ShortestDistance[Vv];
W=V,

/* add w to W */
W=Ww U {w};

/* relaxation step: update the shortest distance to vertices in V-W */
for (each u in V-W) {
ShortestDistance[u]=Minimum (ShortestDistance[u],
ShortestDistance [w]+T[w] [u]);

Data Structures and Programming

: 25
Techniques

Proof of Correctness

 We will first prove that when w is selected,
ShortestDistance|w] gives us the length of
the shortest path from the source to w.

* We will also prove that, at each stage, after W
is enlarged by the addition of w and shortest
distances updated, ShortestDistance|u]
gives the distance of the shortest path from s
to every vertex u in V. — W via intermediaries
lying wholly in /.

Proof (cont’d)

* So first consider when we are ready to enlarge
the vertex set W by choosing a new vertex w
to add to it.

* We will prove that ShortestDistance|w]|
gives us the length of the shortest path from s
to w.

Proof (cont’d)

Let us assume that this is not the case i.e.,

ShortestDistance|w] is not the length of the shortest
path from s to w.

Then, there must exist some shorter path p, which

starts at s and contains a vertex in V — W other than
w.

We can start at the source s and proceed along path p,
passing through vertices in W, until we come to the
first vertex r, that is not in W.

Now notice that the length of the initial portion of the
path p from s to ris shorter than the length of the
entire path p from s tow.

Hypothetical Shorter Path to w

Data Structures and Programming
Techniques

29

Proof (cont’d)

Since we assumed that the length of path p was shorter
than ShorterDistance|w], the length of the path from s
to r is shorter than ShorterDistance|w] also.

Moreover, the path from s to r has all its vertices except
for r lyingin W.

Thus we would have ShortestDistance|r] <
ShortestDistance|w] when w was chosen as the next
vertex to add to W/.

But this contradicts the choice of w and would have meant
that we would have chosen 7 instead.

Since we reached a contradiction, ShorterDistance|w] is
the length of the shortest path from s to w.

Proof (cont’d)

Now we need to verify that ShorterDistance|u] gives the shortest
distance from s to every vertex u in V — W traveling via
intermediaries in W after the new vertex w has been added to W.

Observe that when we add a new vertex w to W, we adjust the
shortest distances to take into account of the possibility that there
is now a shorter path to u going through w.

If that path goes through the old W to w and then immediately to
u, its length will be compared with ShorterDistance|u] and
ShorterDistance|u] will be reduced if the new path is shorter.

The only other possibility for a shorter path is shown on the next
slide where the path travels to w, then back into the old ¥/, to
some member x of the old W, then to wu.

Impossible Shortest Path

Old W

Data Structures and Programming
Techniques

32

Proof (cont’d)

* But there really cannot be such a path. Since x
was placed in W before w, the shortest of all
paths from the source to x runs through the old
W alone. Therefore, the path to x through w
shown on the figure is no shorter than the path
directly to x through W. As a result, the length of
the path from the source to w, x and u is no less
from the old value of ShorterDistance|u].

* Thus, ShorterDistance|u| cannot be reduced by
the algorithm due to a path through w and x, and
we need not consider the length of such paths.

Time Complexity

* If we use an adjacency matrix to represent the
digraph, Dijkstra’s algorithm runs in 0(n?) time
where n is the number of vertices of the graph.

* The initialization stage runs throughn — 1
vertices and takes time O(n).

* The while-loop runs through the n — 1 vertices of
V — {s} one at a time, and for each such vertex,
the selection of the new vertex at minimum
distance, as well as the updating of the distances
takes time proportional to the number of vertices
in V — W. Therefore, the loop takes O(n?) time.

Time Complexity (cont’d)

* If e is much less than n? it is better to use the

adjacency list representation of the graph and a
priority queue to organize the verticesinV — W'.

* Then, the updating of the array
ShortestDistance can be done by going down
the adjacency list of w and updating the
distances in the priority queue. A total of e
updates will be made, each at cost O(logn) if the
priority queue is implemented as a heap, so the
total time for updates is O(e logn).

Time Complexity (cont’d)

* The time to initialize the priority queue is
O(n).
* The time needed to select w is O(logn) since

it involves finding and removing the minimum
element in a heap.

* Thus, the total time of the algorithm is

O(e log n) which is considerably better than
0 (n?) for sparse graphs.

The All-Pairs Shortest Path Problem

* Suppose we have a weighted digraph that gives the
flying time on certain routes containing cities, and
we wish to construct a table that gives the shortest
time required to fly from any one city to any other.

* This is an instance of the all-pairs shortest path
problem.

Data Structures and Programming 37
Techniques

The All-Pairs Shortest Path Problem
(cont’d)

More formally, let G = (V, E) be a weighted
directed graph in which each edge (v,w) has a
non-negative weight C|v, w]. The all-pairs
shortest path problem is to find for each pair of
vertices v, w, the shortest path from v to w.

We could solve this problem by running Dijkstra’s
algorithm with each vertex in turn as a source.

We will present a more direct way of solving the
problem due to R. W. Floyd.

Floyd’s Algorithm

Let us assume that vertices in VV are numbered
with 1,2, ..., n. The algorithm usesann X n
matrix A in which to compute the lengths of
the shortest paths.

We initially set Ali, j| = C[i, j] forall i # j.

If there is no edge from i to j, we assume
Cli,j] = oo.

Each diagonal element of A is set to O.

Floyd’s Algorithm (cont’d)

* The algorithm makes n iterations over the matrix
A.

* After the k-th iteration, A[i, j] will have as value
the smallest length of any path from vertexi to
vertex j that does not pass through a vertex
numbered higher than k.

* In the k-th iteration, we use the following
formulas to compute A:

o] Ak_l[i,j]
Ali,i] = min : '
kli,j] {Ak_l[l, k] + Ag_1[k, /]

The k-th lteration Graphically

Data Structures and Programming
Techniques

41

Floyd’s Algorithm (cont’d)

void APSP (void)
{
int i,7,k;
int A[MAX] [MAX], C[MAX] [MAX];

for (i=0; i<=MAX-1; i++)
for (3=0; J<=MAX-1; J++)
Ali1][g]=CIli][J];
for (i=0; 1i<=MAX-1; 1i++)
A[1][11=0;

for (k=0; k<=MAX-1; k++)
for (i1=0; 1<=MAX-1; 1i++)
for (3=0; J<=MAX-1; j
if (A[1][k]1+ATK][]
Af[1][J]=AT1] [k]+

++)
1 < A[1]1[3])
Alk]

k1317

Time Complexity

 The running time of Floyd’s algorithm is
0 (n3) where n is the number of vertices.

Transitive Closure (Metaatikn
KAglwototnta)

* |[n some problems we may be interested in
determining only whether there exists a path
of length one or more from vertex i to vertex j
of directed graph G.

* The algorithm for this problem is a
modification of Floyd’s algorithm, which
historically predates Floyd’s algorithm, called
Warshall’s algorithm.

Transitive Closure (cont’d)

e Suppose our weight matrix C is just the
adjacency matrix of graph G. Thatis, C[i,j] =
1 if there is an edge from i to j, and O
otherwise.

* We wish to compute the matrix A such that
Ali,j] = 1if there is a path of length one or
more from i to j, and O otherwise.

e Ais often called the transitive closure of the
adjacency matrix.

Transitive Closure (cont’d)

* The transitive closure can be computed using a
procedure similar to the one we used for the all-pairs
shortest path problem.

 We apply the following formula in the k-th pass over
the Boolean matrix A:
Arli,j1 = Ag_qlisj] or (Ag-q1li, k] and Ap_1lk, j])
* The formula states that there is a path from i to j not
passing through a vertex numbered higher than k if

— there is already a path from i to j not passing through a
vertex number higher than k — 1 or

— there is a path from i to k not passing through a vertex
numbered higher than k — 1 and a path from k to j not
passing through a vertex numbered higher than k — 1.

Transitive Closure (cont’d)

volid TransitiveClosure (void)
{
int 1i,7,k;
int A[MAX] [MAX], C[MAX][MAX];

for (1=0;
for (7
[1

; 1<=MAX-1; 1++)
Al1]

0; J<=MAX-1; j++)
[J1=C[i][]];

for (k=0; k<=MAX-1; k++)
for (1=0; i1<=MAX-1; 1++)
for (3=0; J<=MAX-1; J++)
if ('A[1][3])
Al1][J]=A[1] [k] && A[Kk][J];

Time Complexity

* The running time of Warshall’s algorithm is
0 (n3) where n is the number of vertices.

Readings

* T. A. Standish. Data Structures , Algorithms
and Software Principles in C.

— Chapter 10

* A.V. Aho, J. E. Hopcroft and J. D. Ullman. Data
Structures and Algorithms.
— Chapters 6 and 7

